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The influence of finiteness of the deformations and of the convective terms, in determin- 
ing the medium velocity in terms of the displacements, on shockwave propagation in a 
three-dimensional elastic medium is investigated. The Almansi tensor p] is utilized as 
the finite strain tensor. Xt is found that the quantity of shocks and their properties depend 
strongly on the deformations of the medium ahead of the surface of strong d~~n~n~~, 
and on whether or not nonlinear terms in the rbeological equations are taken into account. 
Thus, propagation of three different shocks is possible in the case of small deformation 
when these equations are written exactly. The particular case when the medium is in 
the undeformed state ahead of the shock is singular: all the qualitative results agree 
with the results of the analogous linear problem. Expressions for the shock velocities are 
obtained explicitly in particular cases. 

1, Let us write the connection between the stress tensor btf and the Almansi finite 
strain tensor eij as 

Gil = hel, R&f + zpeij, etf = ‘/% @t,j + U1.t - WrlWt) W 

where h and p are the Lame’ coefficients,ut the displacements of the medium particles. 
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The coefficient u equals unity if finiteness ofthe strains is taken into account, and o = 0 
if the small strain tensor is utilized. Introduction of the coefficient c6 permits clarifica- 
tion of the inflnence of finiteness of the deformation of the medium on shockwave pro- 
pagation. 

The governing equation (1.1) is valid in a first approximation for small deformations 
of the medium when the elastic potential w has the form 

W = l/& kd2 + wifeif 
Let us consider propagation of a surface of strong discontinuity Z in an elastic medium. 

To simplify the calculations, let us introduce a moving rectangular coordinate system 
such that its origin would move together with the surface of discontinuity at a velocity 
G. Let us direct the ss-axis at an arbitrary material point on 2 under consideration 
along the normal to thir surface, then thezf and xs-axes will be in the tangent plane to 
the surface of discontinuity. Let the Greek subscripts a, /3, . . . take the values 1 or 
2, and the Latin subscripts i, j, k, .., the values 1, 2 or 3. We shall calculate all the 
quantities in a fixed coordinate system and project them on the axes of the moving sys- 
tem. To pass from the fixed to the moving coordinate system We write the relationships 

Here 8/& is the delta derivative with respect to time p]. Since the dirplaeements 
are COMIUOUS an E , then only the components I.Q,~ of the tensor components Ul,j will 
be discontinuous, i. e. 

[Ut,jl = [Ui,sl 81, (I.31 
The square brackets in (1.3) denote jumps in the discontinuous quantities on the shock. 

The jumpa luI,sJ are connected with the jumps in the particle velocity vt of the medi- 
um. We find this connection from the dependence 

vi = !$- + (Pus - G) ~3 + Bwi,a (1.4) 

which is the definition of the velocity in terms of the displacements in the moving coor- 
dinate system. The coefficient fi in (1.4) is introduced for the same puz~ as the coef- 
ficient a in (1.1). When 0 = 1, then convective terms are kept in (1.4) ; if these terms 
are neglected, it is necessary to put f3 = 0. Evaluating the jump in (1.4) we obtain 

[vi] = I%,ol Iv=] + I@v3 - G) w,31 (1.5) 

Let us examine the special case of deformability of a medium ahead of a shock when 
UR+~ = 0 and usj # 0. 

only [e ,, R ] and [ei,] of the jumps in the tensor eij are needed, and we find expres- 
sions for these from (1.1) and (1.3) 

iehkl = IU3.4 -- ad,3 [“k931 -t- ‘/aa fUk,31 [“k,31 (W 

lei31 = l/3 hl + “13 Iu3,3143 - ‘d,3 [Uk,31 b3 + ‘Ifi iUk.31 iUk.31 b3 

Setting j = 3 in the governing equation (1. l), we obtain in the discontinuities 

[ai = L [ekkl 81, + + [ei3l (l-7) 

To close the system of equations (1.5)-(1.7) relative to the jumps in the discontinu- 
ous quamltfes, let us write the dynamical compatibility conditions of the discontinuities 
on the shock @] 
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hl = p- (h- - G) lvtl, [p (Bvs - G)] = 0 (1.8) 

~.et us project (1.7) and (1.8) onto the tangent plane to 2 by setting i = a; we obtain 

la,,1 = p lu.,,] = p- @us- - G) .Iuol ($99) 

The equalities (I., 9) say that the vectors [Ui] and fr.~J lie in one plane with the 
normal to the surface Z. Let us call this the characteristic pkne. Let us rotate the Zr 
coordinate system around the za-axis so that the Xi - axis would Iie in the characteristic 
plane. bet yi denote the new coordinate system, The angle of rotation q, equals the 
angle between the $1’ and yl-axes, and the transformation matrix L .= 1 t$j 1 has the 
components [ 11 

1 tr=l;s=cosrpt la=-Ets=sincp, iis = iat = 81, (1.10) 

All the considerations are presented below in the new coordinate system. We denote 
the quantities vr; Itf,s and the others in the Yt system without primes, whib they will 
be primed in the 51 system. 

The position of the gt coordinate system is unknown, and is determined by the angle 
~cp, hence the components of the tensor nt,f are also unknqwn. If the components u;,j 
of this tensor are known in the xi coordinate system. then the tensor ui,i is expressed by 
using the matrix L and applying the formula 

Zbi,j = lkfl*j~k,~ (1.11) 

In order to find cp, we find from (1.9) 

Iv*1 = In,,,1 = 0 (1.12) 

Taking account of (1. IQ, the velocity jumps [q] from (1.5) are expressed in terms 
of [~$,a] as follows: 

[nil A = (@s- - GM& lus,sl -t (,I- P4.s) [ul,d) (4.f3) 

lr~sl A = 0% - G) l~s,s1r A=%fk& 
Besides (1.13). stiII another equation can be obtained from the three relatiomhi~ (1.5) 

by setting i = 2 Pr&i Inal = 0 (%14) 
For a = 1 we obtain from (1.9) and (1.13) 

PA @l,al = v @n:,s tu3,31 + (1 - &&3~ tr%s11 (1.15) 

V = p- (G - @Q-)2 

for i = 3 we find from (1.7) and (1.8) 

(A+ 2~) A {(i - a48 + '12x Ins,sl) fu~,~l - 0: (& - ‘1s I%,alJ 1~1,~1~=V1%31 
Substituting (1.13) into (1.14) results in still another equation (1.16) 

St& IU3.31 = 0 (1.17) 
The identity l3 E p* was taken into account in obtaining (1.17). The equation 

IY.i,3lCOsq, - [z&J sin9 = 0 (1.18) 

can be obtained from (1.11) and (1.1’2). 
Substitu~ng (1.11) into (1.15)-_(I. 17). we obtain three equations which, together with 

(I.. 181, are equivabnt to the system (1.15)-(1.18). and from which the unknown para- 
meters cp, v and the jumps in two projections of the vector [ui,s] are found, while the 
remaining jump is considered given. 
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Let us note that (I, 18) is a corollary of the second equality in (1.12) while (1.17) is 
a corollary of both equalities in (X,12). If we set j3 = 0 everywhere, then (1.17) will 
be satlrftcd identicalIy. Thir is expUned by the f&t that both equalities in (1.12) result 
in the same equatfon for @ = 0, which ht (1.18), hence we obtain an undetermined 
system to find the unknown parameters. 

The propagation velocity of a longitudinal shook is found from (1.16) only In the par- 
tlcular case with [r&J = 0 for a given jump I%&]. In the remaining cases, the 
unknown parameters on the shock are determined under the condition of specifying either 
the jumps of two p~ojtctions of the vector lug&] or the jump in one projection of this 
vector and specifying the angle tp. 

Therefore, the problem of shockwave propagation in an elastic medium taking account 
of nonlinear conveotive terms in the deterrmnation of the veknzity in terms of the dis- 
placemenu differs qu&ativeLy from the same problem when these terms are discarded, 
independently of whether finitenesn of the deformations is taken into accoum or not, 
Let us still note that (1.17) is sat&&d identically also if the medfum is in the unde- 
formed state ahead of tbe front csf the surface f: . In both pEabhsma, when fi - 0 or 
W&l l&&j = 0 tmikiklg &CCouat Of ffnftonesS Of tile d%fonntdOtI is qItaHitat%ve iii nature. 

2. For /II = 0 or when the medium ahead of the shock front is in the undeformed 
state, we find from (1.15) and (1.16) 

VI = (h + 2~) (1 - a& -!- ‘1~” fUa,tl) for I%d 59o 

V 2-p for Iet,J # 0 

For [+,I we have from @. 2) and (1.16) : 

for a = 0 

for a =E 2 
IU&J = 0 

The square root in (2.3) is taken wfth a m&us sign since otherwise the jump [usj] 
would not tend to lljero for [+_a] 3 0 , and the shock w&d not pass into the appropri- 
ate sonic wave. 

liet us examine the case when g = 1, a = 0, and the elastic medium ahead of the 
surface I: is in the deformed state. Let us consider [b] given, and [t+], v and a, 
to be found. After eliminating (Q~)] , equations (1.15) and (1.16) simplify and become 

A+ (P - v) t%,d = ~~l$lzcs.sl~ (A*@ f 2~) = V Hy,d = 0 (2.41 
We hence obtain for the roots 

V 1 = (h + 2~) A’, I%31 = 43 iU3*31* ++w/Cr--1 

V P = Pt [%,31 #OF [u3,31 = 0 (2.5~ 

The angle ‘p defining the petition of the characteristic plane for the first wave is 
found from (1.17). Subsdzutfng (1.11) into (1.17) and taking into aceom SW flr-s,J + 
# 0 on the wave under consideration, we obtain the required equation 

tgcp- 43lul;z (2% 
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From, (2.5) the quantity Vs corresponds to a transverse shock. Taking into account that 
now tus.sl = 0 and (1.17) is satisfied identically, we find the angle rp from (1.18) 

tg cp = [~,sl/[u;,al (2.7) 

Therefore, propagation of two different shockwaves is possible in the approximation 
under ~~id~a~o~ 

For an exact formulation of the problem when a = /3 = 1, we obtain a cubic equa- 
tion 

61 - U&> VS - @P (1 - 4s) -t- (h + WV - Gs) (1 - 4,s)2 t- 

+ (A + 2j.4 (I- 4s) 4: - P& Ff” + A W + P (L -!- 2Er) lG + 2 (1 - 

- 4,s) (1 - ~~,dl~ I’ - A2p2 (A -k %I (1 - %“,s> = 0 (2.8) 
& = ‘1% M,,s + GZJ 

from (1.15) and(l. 16) to find V . 
If the term U$ is neglected in this equation, as can be done in the case of small 

deformations of the medium ahead of the shock, or when u<s= 0,then we obtain for the 
roots 
vi0 = (A + W (1 - uQ+,s) (I - U31S)r 

(2.9) 
h31 = 0, ' 17; =i V,O = p,(us,2] = 0 

The first root corresponds to a longitudinal shockwave for which the angle cp is deter- 
mined from (2.6). The coincident roots .V,o and Vs” correspond to a transverse shock 
for which the angle Q, is found from (2.7), In an exact f~u~tien of the problem when 
the term %T: is not discarded in (2.8), all three roots Vi, 5’s and Vsare different, and 
the jumps [nlr3] and [us,s] differ simultaneously from zero. Hence’, after dividing by 
[~s,s] in (1. X7), we arrive at (2.6), which will hold simultaneously for all three roots. 

If ?.+,a+ is considered a small quantity in (2.8), the roots of this equation are written 
to higher order accuracy as 

Terms containing r+s’ to powers not higher than the second are kept in obtaining 
(2. IO), and not higher than the first for (2.11). The inequality 

was hence assumed. 
PLKI [.%sl I 

For small def~matioRs of the medium, the ~equa~~ (1 - EL&) Q.& - Vi”) < 0 is 
satisfied, hence there results from (2.11) that both shockwaves from (2.11) are possible 
under the condition fus,sl 4 0 (2.12) 

In general, the cubic equation (2.8) always has one real root, but the other two depend 
on the sign of the discriminant of this equation, The inequality(2.12) should be under- 
stood as the condition for positivity of the discrfminant, which assures all three roots are 
rest This inequaliity is one of the consequences of the qualitative inf’iuence of the non- 
linear terms. In the linear ap~o~mation, or when not all the nonlinear terms are taken 
into account, this condition is missing. 

The propagation veIocity of sound waves can be obtained from (2.8). To do this it is 
sufficient to set 4,s E u& f u*,s and to omit the plus and .minus signs everywhere 
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v v,= 1= ‘/rP i- ‘12 (A + 2ct) ((1 - h,*Y -L &> * YPa 

D = {P - (a + 2P) (1 - %sW + (A + 22r) G (A f 34 (I - %3)2 + 
-i- 2P + (5 + w 4,819) 4m v, = CL (2.13) 

The propagation velocities of the sound waves are similar to the velocities of weak 
shockwaves. Therefore, weak shockwaves, as well as sound waves, in a three-dimensional 
elastic medium can propagate at three different velocities, one of which equals the trans- 
verse wave velocity in the linear approximation. 

BIBLIOGRAPHY 

1. Sedov, L. I., Introduction to Continuum Mechanics. Moscow, Fizmatgiz, 19S2. 
2. Thomas, T. Y., Plastic Flow and Fracture in Solids. Academic Press, N. Y. - 

London, 1961. 
Translated by M. D. F. 
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Asymptotic expansions for the solution of the Cauchy-Poisson problem of wave motion 
of a viscous incompressible fluid with infinite depth are constructed at large Reynolds 
numbers. A proof of the asymptotics is given. ExampIes of plane and spat&i motions 

are presented in which the asymptotic expansion is determined in the form of a free sur- 
face. 

In the case of plane motion a solution of this problem was obtained in closed form and 
was analyzed in some particular cases in p] by the integral transformation method. The 
problem was solved by the same method in other papers also. A discussion of these papers 
is presented in [2]. 

Moiseev proposed the asymptotic method 13-71 for the solution of this and a number 
of other problems. 

Theorems of existence and uniqueness for solutions of unsteady linearized Navier-Stokes 
equations for the motion of a viscous fluid with a free surface in an openvessel were 
obtained in papers [S-l O] in the absence and presence of surface tension. 

In this paper an asymptotic method is also proposed. However, the method used for 
finding the asymptotics leads to simpler and more convenient expressions for numerical 
analysis than in [l. 35 

In Sect. 2 asymptotic expansions of the solution at large Reynolds numbers are con- 
structed with any arbitrary preassigned degree of accuracy. The construction of the 
asympFoFics b carried out by the method presenttd in paper Ill]. In Fhis cclnneCtiOn the 
first and second iteration processes are applied simultaneously to theequations and bound- 
ary conditions. As a. result of this, the initial system at each stage decomposes into two 
independent problems for the potential and vertical parts of the motion. 


