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The influence of finiteness of the deformations and of the convective terms, in determin-
ing the medium velocity in terms of the displacements, on shockwave propagation in a
three~dimensional elastic medium is investigated, The Almansi tensor [1] is utilized as
the finite strain tensor, It is found that the quantity of shocks and their properties depend
strongly on the deformations of the medium ahead of the surface of strong discontinuity,
and on whether or not nonlinear terms in the rheological equations are taken into account,
Thus, propagation of three different shocks is possible in the case of small deformation
when these equations are written exactly, The particular case when the medjum is in
the undeformed state ahead of the shock is singular: all the qualitative results agree
with the results of the analogous linear problem, Expressions for the shock velocities are
obtained explicitly in particular cases,

1, Let us write the connection between the stress tensor ¢,; and the Almansi finite
strain tensor €;3 as

017 = hegpdyy + ey, ey = Yy (Ui + U — Cn,lineg) (1.1)

where A and p are the Lamé coefficients,u; the displacements of the medium particles,
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The coefficient a equals unity if finiteness of the strains is taken into account, anda=0
if the small strain tensor is utilized, Introduction of the coefficient ¢ permits clarifica-
tion of the influence of finiteness of the deformation of the medium on shockwave pro-
pagation,

The governing equation (1,1) is valid in a first approximation for small deformations
of the medium when the elastic potential W has the form

W = 1,k (exn)® + pewsey
Let us consider propagation of a surface of swong discontinuity £ in an elastic medium,

To simplify the calculations, let us introduce a moving rectangular coordinate system
such that its origin would move together with the surface of discontinuity at a velocity

G. Let us direct the Ty-axis at an arbitrary material point on ¥ under consideration
along the normal to this surface, then the 2y~ and 2 -axes will be in the tangent plane to
the surface of discontinuity, Let the Greek subscripts a, P, ... take the values 1 or

2, and the Latin subscripts i, 7, k, ... the values 1, 2 or 3, We shall calculate all the
quantities in a fixed coordinate system and project them on the axes of the moving sys-
tem. To pass from the fixed to the moving coordinate system We write the relationships

3 a a a ) -~ 0
E=6133;;+54a3}:. ¥ 72l T Ol (1.2)

Here 8/8f is the delta derivative with respect to time [2]), Since the displacements
are continuous on 3 , then only the components u; g of the tensor components u; ; will
be discontinuous, i. e, [ug g1 = [us,5] 835 1.3y

The square brackets in (1, 3) denote jumps in the discontinuous quantities on the shock,
The jumps lu; 3] are connected with the jumps in the particle velocity v, of the medi-
um, We find this connection from the dependence

by = b+ (Bs — €) s+ Boatia (1.4)
which is the definition of the velocity in terms of the displacements in the moving coor-
dinate system, The coefficient § in (1, 4) is introduced for the same purpose as the coef-
ficient @ in (1,1), When B = {1, then convective terms are kept in (1.4); if these terms
are neglected, it is necessary to put f = 0. Evaluating the jump in (1.4) we obtain

(v;] = Buy,a [va] + [(Bus — G) uy ] (1.5)

Let us examine the special case of deformability of 2 medium ahead of a shock when
uk‘g.r = O and uk',* 2# 0.

Only [exx] and [e;;] of the jumps in the tensor ¢;; are needed, and we find expres-
sions for these from (1,1) and (1. 3)

lexx) = [ts,2] — atti s [Ugos] + /oot [Up2] [Uk,a] (1.6)
leis] = Ya (4,31 + Y lus,3] 8i3 — ciuixs [Ug,3] O1s + /o [tp,3] [Unia] is
Setting j = 3 in the governing equation (1.1), we obtain in the discontinuities

foig] = A lenr] 815 + 2 [egs] (1.7

To close the system of equations (1, 5)—(1. 7) relative to the jumps in the discontinu-
ous quantities, let us write the dynamical compatibility conditions of the discontinuities
on the shock [2]
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[6:] = p~ (Bvy™ — G) [wi], [p Bvs — )] =0 (1.8)
Let us project (1,7) and (1, 8) onto the tangent plane to X by setting i = a; we obtain
{5013] =R {u;,sl = p~ (ﬁvs* - G) {vel (1.9)

The equalities (1. 9) say that the vectors [v;] and {u; 3] lie in one plane with the
normal to the surface 3, Let us call this the characteristic plane, Let us rotate the 2,
coordinate system around the Zg-axis so that the &;-axis would lie in the characteristic
plane, Let ¥; denote the new coordinate system, The angle of rotation ¢ equals the
angle between the Z3- and Yyj-axes, and the transformation matrix L.= || /;; | has the
components [1]

Iy=lyp=1cosq, Ily=—1l,=sing, lis= Iy = 84 (1.10)

All the considerations are presented below in the new coordinate system, We denote
the quantities Uj, 4,3 and the others in the ¥; system without primes, while they wiil
be primed in the z; system,

The position of the ¥, coordinate system is unknown, and is determined by the angle
¢, hence the components of the tensor u;,; are also unknown, If the components uj,;
of this tensor are known in the Z; coordinate system, then the tensor u;,; is expressed by
using the matrix [, and applying the formula

U5 = lyslnjlik,n (1.11)
In order to find @, we find from (1. 9)

Taking account of (1, 12), the velocity jumps [p;] from (1. 5) are expressed in terms
of [u;s] as follows: - A
" (2] A = (Bog™ — G) {Buip [g,s] + (1 — Bugs) [ug,s]} (1.13)

{vs]A = (Bvg™ — G) {us,sl, A= i-—-—Buj.f,s
Besides (1,13}, still another equation can be obtained from the three relationships (1,5)

by setting { = 2 Bu;,s [vs] =0 (1'14)
For @ = 1 we obtain from (1. 9) and (1,13)
pA [ug,s] = V {Bui s [ua,s] + (1 — Bus,s) [1g,s]} (1.15)

V = e” (G — ﬁv{)z
for i = 3 we find from (1.7) and (1. 8)
(A + 2p) A {(1 — o g + Yot [Ug,g]) [Us,s] = @ (ufs — Vs [y,5]) [Un,s]}=V [tis,3]

Substituting (1, 13) into (1, 14) results in still another equation (1.16)
Buzslus,s) =0 (1.47)

The identity B == B* was taken into account in obtaining (1,17), The equation
[Us,3] COS @ — [uy 5] sing =0 (1.18)

can be obtained from (1.11) and (1,12),

Substituting (1.11) into (1,15)—~(1,17). we obtain three equations which, together with
(1.18), are equivalent to the system (1,15)~(1.18), and from which the unknown para-
meters @, V and the jumps in two projections of the vector [u;,] are found, while the
remaining jump is considered given,
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Let us note that (1.18) is a corollary of the second equality in (1.12) while (1.17) is
a corollary of both equalities in (1.12), If we set = O everywhere, then (1,17) will
be satisfied identically, This is explained by the fact that both equalities in (1., 12) result
in the same equation for § = 0, which is (1,18), hence we obtain an undetermined
system to find the unknown parameters,

The propagation velocity of a longitudinal shock is found from (1. 18) only in the par-
ticular case with [u, 4] = O for a given jump [y, ,] . In the remaining cases, the
unknown parameters on the shock are determined under the condition of specifying either
the jumps of two projections of the vector [yl or the jump in one projection of this
vector and specifying the angle @.

Therefore, the problem of shockwave propagation in an elastic medium taking account
of nonlinear convective terms in the determination of the velocity in terms of the dis-
placements differs qualitatively from the same problem when these terms are discarded,
independently of whether finiteness of the deformations is taken into account or not,

Let us still note that (1,17) is satisfied identically also if the medium is in the unde~
formed state ahead of the front of the surface 3, In both problems, when § = 0 or
when u;; = 0 taking account of finiteness of the deformation is quantitative in nature,

2, For § = 0 or when the medium ahead of the shock front is in the undeformed
state, we find from (1.15) and (1, 18)

Vi (h+ 20) (1 — augs - Yo [Uug,a])  for [y 5]1=0 (2.1)
Vo=p for {ui,al #+0 (2.2)
For [ugg] we have from (2,2) and (1.16):
for @ =0
[ug,sl =0
for a =1 33

(una] = 13s — bl — {(1s — £ ' + @uls — aD al]” @3)

The square root in (2, 3) is taken with a minus sign since otherwise the jump [ug 4l
would not tend to zero for [uy,,] = 0 , and the shock would not pass into the appropri~
ate sonic wave, ’

Let us examine the case when f§ == 1, @ = 0, and the elastic medium ahead of the
surface 3 is in the deformed state, Let us consider [ug 4] given, and [u,,4l, V and 9
to be found, After eliminating [u, o] .equations (1.15) and (1.16) simplify and become

A*(p = V) [uy,5] = Vuisltasl, {AT(M + 2p) = V Hug 3] =0 (2.4)
We hence obtain for the roots
Vi= (A + 2u)A%, [tg,5] == uy 5 [Ug,3], (A+2pu)/ p—V,
Vi=up, [1,3] F=0, [us,3] =0 (2.9)

The angle @ defining the position of the characteristic plane for the first wave is
found from (1.17). Substituting (1.11) into (1.17) and taking into account that [us s] ==
== 0 on the wave under consideration, we obtain the required equation

tg P = Uy, 3/“13 (2.6)
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From (2. 5) the quantity V,corresponds to a transverse shock, Taking into account that
now fugyl = 0 and (1.17) is satisfied 1dentica11y, we find the angle @ from (1.18)

tg ¢ = [uz /(1,5 (2.7

Therefore, propagation of two different shockwaves is possible in the approximation
under consideration,

For an exact formulation of the problem when o = B = 1, we obtain a cubic equa-
tion

(1— 1) Ve — (2p(1—uss) + (A + 20) (1 — uge) (1 — us)® +
+ (b4 28) (1 — ug,o) Ui — puis} V2 + A{p? + p(h+ 2p) [udh +2(1 —
— Uzs) (1 — usa)]} V AWM+ 2) (1 — ugg) =0 (2.8)
.s = 3 (us,s -+ uz3)
from (1.15) and{1,16) to find V,

If the term uf,’g is neglected in this equation, as can be done in the case of small
deformations of the medium ahead of the shock, or when u{ 3= 0,then we obtain for the
roots (2.9)

= (7" + zp') (1 - @,3)(1 - u3f3)v u’1’3] = 0: ¥ V; = Vzo = W, [us,sl =0

The first root corresponds to a longitudinal shockwave for which the angle @ is deter-
mined from (2.6), The coincident roots V,”> and V,° correspond to a transverse shock
for which the angle @ is found from (2, 7). In an exact formulatien of the problem when
the term u;3 is not discarded in (2. 8), all three roots V,, V, and Vare different, and
the jumps [y, 5] and [u,,s] differ simultaneously from zero, Hence, after dividing by
[ug,3] in (1.17), we arrive at (2, 6), which will hold simultaneously for all three roots,

If u,,3" is considered a small quantity in (2, 8), the roots of this equation are written
to higher order accuracy as
G+2p) - “;‘,8)2 —B i

V= V4 V1o ( + 2u) T —ar Uis (2.10)
«V — + (;u + 2@) [us,a} )!/:
3 = 4= Hig g ( Ty (2.11)

Terms containing u, ,* to powers not higher than the second are kept in obtaining
(2.10), and not higher than the first for (2,11), The inequality

fuls| << | [tas] |
was hence assumed,

For small deformations of the medium, the inequality (1 — uss) (0 — V;°) < 0 is
satisfied, hence there results from (2, 11) that both shockwaves from (2.11) are possible

under the condition [us s} < 0 (2.12)

In general, the cubic equation (2, 8) always has one real root, but the other two depend
on the sign of the discriminant of this equation, The inequality {2, 12) should be under~
stood as the condition for positivity of the discriminant, which assures all three roots are
real, This inequality is one of the consequences of the qualitative influence of the non-
linear terms, In the linear approximation, or when not all the nonlinear terms are taken
into account, this condition is missing,

The propaganon velocity of sound waves can be obtained from (2. 8), To do this it is
sufficient to set uyg = ugy = u' ,3 and to omit the plus and minus signs everywhere



848 A, D, Chernyshov

Vi=Va="ap + Y2 (A + 20) {(1 — tg,8)* -+ u1g} &= Y/sD'
D={p—(+2u) (1 —us,s)’Y + A+ 20) {2 (A + 2w) (1 — u3,5)* +
+ 2+ A+ 2 uiglurg Vs=p (2.13)

The propagation velocities of the sound waves are similar to the velocities of weak
shockwaves, Therefore, weak shockwaves, as well as sound waves, in a three~dimensional
elastic medium can propagate at three different velocities, one of which equals the trans-
verse wave velocity in the linear approximation,
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ASYMPTOTIC ANALYSIS OF WAVE MOTICNS OF A

VISCOUS FLUID WITH A FREE BOUNDARY
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(Received May 13, 1969)
Asymptotic expansions for the solution of the Cauchy-Poisson problem of wave motion
of a viscous incompressible fluid with infinite depth are constructed at large Reynolds
numbers, A proof of the asymptotics is given, Examples of plane and spatial motions
are presented in which the asymptotic expansion is determined in the form of a free sur-
face,

In the case of plane motion a solution of this problem was obtained in closed form and
was analyzed in some particular cases in [1] by the integral transformation method, The
problem was solved by the same method in other papers also, A discussion of these papers
is presented in [2],

Moiseev proposed the asymptotic method [3—7] for the solution of this and a number
of other problems,

Theorems of existence and uniqueness for solutions of unsteady linearized Navier-Stokes
equations for the motion of a viscous fluid with a free surface in an openvessel were
obtained in papers [8~10] in the absence and presence of surface tension,

In this paper an asymptotic method is also proposed. However, the method used for
finding the asymptotics leads to simpler and more convenient expressions for numerical
analysis than in [1, 3]

In Sect, 2 asymptotic expansions of the solution at large Reynolds numbers are con-
structed with any arbitrary preassigned degree of accuracy, The construction of the
asymptotics is carried out by the method presented in paper [11]. In this connection the
first and second iteration processes are applied simultaneously to the-equations and bound-
ary conditions, As a result of this, the initial system at each stage decomposes into two
independent problems for the potential and vortical parts of the motion,



